05/02/2016 · A comparison of C3, C4 and CAM plants


C3: Rice, soybean, wheat, rye, oats,
millet, barley, potato
C4: Maize (corn), sorghum, pearl millet
and sugarcane
CAM: Pineapple, Cactus
Hypothesis:
The C4 plant will have the highest rate of photosynthesis over 12 hours of daylight compared to CAM and C3 plants because C4 plants can thrive in direct sunlight and it uses Pep carboxylase instead of Rubisco.
Experimental Design
There will be one plant of each kind; a soybean plant is a C3 plant, a sugarcane plant is a C4 plant, and a cactus is a Cam plant.
There will be 3 chambers with intense sunlight(50 watts)
shining into all of the chambers equally.

Photosynthesis Part 5: C4 and CAM - YouTube

13/01/2012 · Alternative Pathways of carbon fixation: C4 and CAM plants

C3, C4, and CAM Photosynthesis Flashcards | Quizlet

The acidity was found to arise from the opening of their stomata at night to take in CO2 and fix it into malic acid for storage in the large vacuoles of their photosynthetic cells. It could drop the pH to 4 with a malic acid concentration up to 0.3M . Then in the heat of the day, the stomata close tightly to conserve water and the malic acid is decarboxylated to release the CO2 for fixing by the Calvin cycle. PEP is used for the initial short-term carbon fixation as in the , but the entire chain of reactions occurs in the same cell rather than handing off to a separate cell as with the C4 plants. In the CAM strategy, the processes are separated temporally, the initial CO2 fixation at night, and the malic acid to Calvin cycle part taking place during the day.

C4 and CAM Photosynthesis - Mrs. Swartz's Biology Site

The sketch below of the day-night cycle of the CAM plants is patterned after Moore, et al. The name Crassulacean Acid Metabolism came from the fact that this strategy was discovered in a member of the Crassulaceae which was observed to become very acidic at night and progressively more basic during the day.

Cam, C3, and C4 Plants and their Rate of Photosynthesis duri

The CAM plants represent a metabolic strategy adapted to extremely hot and dry environments. They represent about 10% of the plant species and include cacti, orchids, maternity plant, wax plant, pineapple, Spanish moss, and some ferns. The only agriculturally significant CAM plants are the pineapple and an Agave species used to make tequila and as a source of fiber.

Types of Photosynthesis: C3, C4 and CAM - …

The C3 and C4 refer to how these classes of plants assimilate carbon dioxide into their systems. During the first steps in CO2 assimilation, C3 plants form a pair of three carbon-atom molecules. C4 plants, on the other hand, initially form four carbon-atom molecules. In C3 plants CO2 enters the leaf through the stomata, which are microscopic pores found on the under-surface of leaves and on stems. They occur in the epidermal tissue. The CO2 then diffuses into the mesophyll cells where a bifunctional enzyme called Rubisco fixes carbon dioxide or molecular oxygen, which leads to photosynthesis or photorespiration. The Rubisco catalyzes the CO2 of and forms two Phosphoglycerate (PGA) molecules, which is a three carbon compound. This PGA is converted to sugars and transported to the growing leaves, roots and reproductive structures. This form of photosynthesis is found in all major plant families or in about 300,000 species and make up 95% of all plants. Typical C3 plants include: barley, sunflower, rice, tomatoes, wheat, peanuts, cotton, sugar beet, oats, and most trees and are found in typically cooler and wetter environments. C4 plants on the other hand the CO2 enters through the stomata again, but goes into the mesophyll tissue, where it is fixed by PepCarboxylase to form , which unlike Rubisco does not have the ability to fix oxygen, which contributes to lower photorespiratory carbon losses in C4 plants. This Oxaloacetate is then converted to malate, which is a four carbon molecule and transported to the bundle sheath cells. From this CO2 is released and forms sucrose and starch. These plants have a special mechanism within their leaves by which they are able to increase CO2 concentration several times higher than ambient levels. These plants tend to be found in warmer and water-limited environments. Typical examples include many tropical grasses and agricultural crops such as maize (corn), sugarcane, and sorghum. Characteristically, C4-plants have higher rates of photosynthesis than C3-plants. Photosynthesis in C4 plants does not saturate but increases at high light intensities and can continue at very low CO2 concentrations. Subsequently, these plants have rapid growth rates and higher biomass and economic yields than C3-plants.

Compare and contrast CAM and C4 photosynthesis? | …

In 2013, the symposium will be held at the I-Hotel and Conference Center on the campus of the University of Illinois at Urbana-Champaign from the 6-9th August. The meeting will include field trips to the nearby SoyFACE experimental facility for study of crop responses to climate change () and the Energy Farm of the Energy Biosciences Institute (). Interested participants may travel on to the International Photosynthetic Congress in St Louis, Missouri, starting Aug 11th.